Systematic Fluorination of P3HT: Synthesis of P(3HT-co-3H4FT)s by Direct Arylation Polymerization, Characterization, and Device Performance in OPVs

Patrick D. Homyak,† Yao Liu,† Jared D. Harris,† Feng Liu,‡ Kenneth R. Carter,‡ Thomas P. Russell,‡,† and E. Bryan Coughlin*†

†Department of Polymer Science & Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
‡Materials Science Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, California 94720, United States

ABSTRACT: We present a strategy for tuning physical properties of P3HT-based copolymers by incorporating a fluorinated thiophene repeat unit. The synthesis and characterization of a series of fluorinated polythiophene P(3HT-co-3H4FT) materials are described, where the percentage of fluorinated repeat units in the polymer backbone is systematically varied from 0 to 100%. These P(3HT-co-3H4FT)s (P0, P25, P50, P75, and P100) were synthesized via direct arylation polymerization (DARP) methods. By varying the feed ratio of the two monomers, the percent of fluorinated repeat units (3H4FT) could be precisely controlled. As fluorination is increased, there is a strong effect on the electronic properties of the polymers, evidenced by a 0.4 eV drop in the E_{HOMO} level for P100 when compared to P0. GIWAXS and TEM were used to determine the crystallinity and morphology. TEM analysis of thin film polymer/PCBM bulk-heterojunction blends indicates that increased fluorination does not result in stronger phase separation. Organic photovoltaic devices were fabricated to evaluate changes in device performance as a result of fluorination.

1. INTRODUCTION

Conjugated, semiconducting polymers have been an interesting research area due to their potential to serve as solution processable, active materials for a variety of organic electronic applications, such as organic photovoltaics (OPVs),1−5 organic field-effect transistors (OFETs),6 and organic light-emitting diodes (OLEDs).7 Since these materials may be processed from solution, device fabrication can be achieved by roll-to-roll fabrication methods, ultimately leading to low-cost modules, particularly for large-area OPVs. Since devices can be fabricated on flexible, lightweight substrates, many niche solar power application areas can be served (e.g., remote locations, emergency scenarios, portable uses, short-term installations), in contrast to those typically served by conventional monocrystalline silicon solar panels (e.g., homes, permanent large-scale power arrays).

Poly(3-hexylthiophene) (P3HT) is the most well-known and studied conjugated polymer due to its availability, relative ease of synthesis, stability, good charge transport, and crystallinity.8 In OPV devices, P3HT typically has power conversion efficiencies (PCEs) from 3 to 5%, depending on processing conditions, device architecture, and polymer molecular weight and dispersity.8,9 Recently, a few reports have detailed the synthesis of modified P3HT materials, where fluorine atoms can be substituted in the 4-position of the 3-hexylthiophene (3HT) repeat unit (Scheme 1). The addition of fluorine as an electron-withdrawing substituent, due to its small van der Waals radius and high electronegativity, has proven to be an important tool for tuning physical and chemical properties of many conjugated polymers.10,11

Gohier et al. provided a monomer-modification approach for fluorinated polythiophenes, where a fluorinated terthiophene monomer was synthesized in five steps from 3-hexylthiophene (Scheme 1).12 This monomer was then electropolymerized affording polythiophene films with ~33% fluorination along the polymer backbone. Koo et al. demonstrated a two-step direct postpolymerization modification strategy,13 where P3HT was first brominated, using an electrophilic brominating reagent (NBS). This produced 3H4BrT units in the polymer backbone that could then be lithiated with n-BuLi and quenched with an electrophilic fluorinating reagent (N-fluorobenzensulfonamide) to produce fluorinated 3H4FT units in the polymer backbone. They were able to fluorinate 67% of the thiophene units in the polymer backbone. Recently, Fei et al. demonstrated that 100% fluorination could be achieved by a monomer-modification approach, where 2,5-dibromo-3-fluoro-4-hexylthiophene could be synthesized in four steps from either 3-hexylthiophene or 2,3,4,5-tetramethyloctathiophene and then...
polymerized by Grignard metathesis (GRIM). 14 By this approach, different 1-P3ATs were obtained where the length and branching of the alkyl (A) chain were varied from the original linear hexyl chain to in the dimer model was used to assess the relative energy of different conformational states, where the dihedral angle between the units was varied in 15° increments from 0° to ±180°, as shown in Figure 1 (here, 0° corresponds to a planar, anti, or trans conformation). Four models were considered, where the 4-

2. DISCUSSION

Modeling experiments were performed to understand the influence of fluorination on (1) the dihedral angle (twisting) along the polymer backbone and (2) the electronic properties of the polymers, in particular how the E_HOMO level is influenced by higher degrees of backbone fluorination. First, a thiophene dimer model was used to assess the relative energy of different conformational states, where the dihedral angle between the units was varied in 15° increments from 0° to ±180°, as shown in Figure 1 (here, 0° corresponds to a planar, anti, or trans conformation). Four models were considered, where the 4-

2. DISCUSSION

Modeling experiments were performed to understand the influence of fluorination on (1) the dihedral angle (twisting) along the polymer backbone and (2) the electronic properties of the polymers, in particular how the E_HOMO level is influenced by higher degrees of backbone fluorination. First, a thiophene dimer model was used to assess the relative energy of different conformational states, where the dihedral angle between the units was varied in 15° increments from 0° to ±180°, as shown in Figure 1 (here, 0° corresponds to a planar, anti, or trans conformation). Four models were considered, where the 4-
existence of two local energy minima is well documented in the polythiophene literature, and in most studies, an anti-gauche conformation is assumed.33–35 Interestingly, when X₃ is fluorine, the global energy minima is around −135°, compared to when X₃ is hydrogen and the global energy minima is around 35°, as is more typically observed for thiophene-based polymers. This may indicate a slightly reduced preference for the fluorinated polymers to order into anti-gauche conformations, which may have implications on the crystallinity, as discussed later. In this dimer model, there does not appear to be enhanced planarity or a shift of the global energy minima toward 0° with the addition of the fluorine atoms in X₁ and X₂. This result may be limited by the use of a dimer model, which is known to underestimate rotational torsion barriers in comparison to longer oligothiophene models (where n = 10).36 It is also interesting to note that the F,F dimer exhibits a lower relative energy (by ~4 kcal/mol) in the fully cisoid conformation (180°) than the F,H dimer.

To understand the effect of increasing fluorination on the HOMO and LUMO tetramer models were studied (Figure 2).

![Figure 2](image)

Figure 2. Calculated values for E_{HOMO} and E_{LUMO} were obtained using DFT methods for 3-ethylthiophene tetramers with increasing fluorine substitution in the 4-position. Smaller dots represent individual calculations for tetramers where multiple possible isomeric sequences (e.g., 1F, 2F, and 3F), while the larger symbols represent the average values.

models were built using the lowest relative energy dihedral angles obtained from Figure 1 as a starting point for geometric optimizations. The number of fluorine atoms substituted in the 4-position (X₄, X₅, X₆, X₇, X₈) of the thiophene tetramers was increased from 0 to 4, yielding five tetramer models: 0F, 1F, 2F, 3F, and 4F. Thus, in the 1F model, there is one fluorine substitution. In the 2F model, there are two fluorine substitutions, and so forth. Each of these tetramers can be used as a comparison for the copolymers synthesized, as 1F ≈ P25, 2F ≈ P50 ... 4F ≈ P100. The same level of DFT theory was used as before to optimize system geometry (energy minimization) and calculate E_{HOMO} and E_{LUMO} (their difference estimated as E_{g}) for each tetramer. Since the 1F, 2F, and 3F tetramers have multiple isomers depending on the unit sequencing (4, 6, and 4 isomers, respectively), calculations were performed for each possible isomeric sequence and each result is plotted in Figure 2 along with the overall average value. Tabulated results for each specific tetramer isomer are given in the Supporting Information (Table S1) along with representative structures of the models (Figures S1–S5).

The average E_{HOMO} values were calculated to be −5.16, −5.24, −5.34, −5.42, and −5.49 eV for the 0F, 1F, 2F, 3F, and 4F models, respectively. It appears that the E_{HOMO} is systematically lowered (by ~0.1 eV) with each fluorine substitution on the tetramer. Analysis of the E_{g} for the tetramer, calculated by subtracting the E_{LUMO} from the E_{HOMO}, suggests that the E_{g} is not strongly influenced by fluorination. Thus, the E_{LUMO} is reduced with increasing fluorination along with the E_{HOMO}. Overall, these computational results indicate that with increasing amounts of fluorination the E_{HOMO} is further lowered, which is beneficial for achieving higher V_{oc} in OPV devices, as well as greater oxidative stability. Thus, by systematically adjusting the percentage of fluorine in P(3HT-co-3H4FT)s, the molecular orbital energy levels may be precisely tuned.

For the synthesis of the P(3HT-co-3H4FT), direct arylation polymerization (DArP) was employed. Using a DArP strategy, statistical copolymers containing the 3HT and 3H4FT units can easily be achieved with the monobrominated 2Br3HT and 2Br3H4FT monomeric building blocks. These monomers have both an Aryl–Br and activated C–H functionality, making them suitable for DArP. P3HT has been previously synthesized by DArP, with good control over molecular weight, regioregularity (RR), dispersity, and branching.23–25,27,28 Copolymers with precisely tuned amounts of the fluorinated repeat units (3H4FT) can be achieved by varying the ratio of the 2Br3H4FT units in the polymerization feed ratio, thereby controlling the percentage of fluorine in the polymer backbone.

Synthesis of 2Br3H4FT was achieved in one additional synthetic step from the known precursor 2,5-dibromo-3-hexyl-4-fluorothiophene.12 Synthesis of this precursor is performed in a similar manner to the preparation of 2,5-dibromo-3,4-difluoro thiophene, except the initial starting material in this case is 3-hexylthiophene rather than thiophene. 2,5-Dibromo-3-hexyl-4-fluorothiophene was synthesized and shown to be a suitable monomer for polymerization by Grignard metathesis (GRIM) by Fei et al., affording fluorinated f-P3AT materials.14 Here it was found that lithiation of this compound with n-BuLi occurs selectively in the 5-position due to the presence of the strong electron-withdrawing fluorine group in the adjacent 4-position. Quenching of the lithiated thiophene intermediate with water affords the desired 2Br3H4FT monomer as a single product (Scheme 2).1H and 19F NMR confirmed the formation of a single product. No lithiation of the 2-position was observed. A similar directing effect due to the electronegative fluorine in the 4-position was observed by Heeney, when 2,5-dibromo-3-hexyl-4-fluorothiophene was used to generate a Grignard reagent for GRIM.34

With this monomer, statistical copolymers with finely tuned amounts of fluorination along the conjugated backbone could be achieved by varying the 2Br3H4FT:2Br3HT feed ratio (Scheme 3). Five copolymer compositions were targeted with 0, 25, 50, 75, and 100% of the fluorinated monomer (by molar ratio), which correspond to P₀, P₂₅, P₅₀, P₇₅, and P₁₀₀, respectively. Conditions for DArP were first optimized for the
synthesis of P0 and then applied to the rest of the copolymer series resulting in high molecular weight polymers (Table 1). In accordance with our previous experience, Pd$_2$(dba)$_3$, CHCl$_3$, and tris(α-methoxyphenyl)phosphine were selected as the Pd0 source and ligand. Cs$_2$CO$_3$ (3 equiv) was used as an insoluble heterogeneous base source, generating soluble cesium pivalate in situ from pivalic acid (1 equiv). Optimization revealed THF to be the most effective solvent for the polymerizations.

Table 1. Molecular Weight, Regioregularity, and Composition of P(3HT-co-3H4FT)s

<table>
<thead>
<tr>
<th>M_c a [kg/mol]</th>
<th>M_w a [kg/mol]</th>
<th>D</th>
<th>RRb [%]</th>
<th>Fc [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>13.0</td>
<td>1.4</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>P25</td>
<td>12.9</td>
<td>1.4</td>
<td>89</td>
<td>27</td>
</tr>
<tr>
<td>P50</td>
<td>16.4</td>
<td>2.0</td>
<td>85</td>
<td>50</td>
</tr>
<tr>
<td>P75</td>
<td>12.4</td>
<td>2.0</td>
<td>81</td>
<td>75</td>
</tr>
<tr>
<td>P100</td>
<td>5.6</td>
<td>6.9</td>
<td>78</td>
<td>100</td>
</tr>
</tbody>
</table>

“Measured by GPC versus polystyrene standards in 1,2,4-trichlorobenzene at 135 °C (1 mg/mL).” Regioregularity (RR) estimated by 1H NMR. “Corresponds to percent of 3H4FT repeat units in final polymer, measured by 1H NMR.

Figure 3. 1H NMR for P0–P100. The α-CH$_2$– on the hexyl side chain can be used to differentiate between the two monomer units. Peaks at δ 2.83 and 2.76 ppm correspond to the α-CH$_3$ on 3HT (\bullet) and 3H4FT (\bullet) units, respectively. Peaks resulting from head-to-head couplings can be seen around δ 2.6 ppm.

Information) suggests the formation of statistical copolymers, as opposed to blocky or alternating structures, since a distribution of many peaks of similar intensity are observed in the P50 case, which resembles previous observations in P3HT-based copolymers.38,39

Head-to-head couplings, from both 3HT and 3H4FT units, can be observed at δ ~2.63 ppm, as has been previously demonstrated for P3HT.40 Integration of these peaks allows for RR to be calculated for each copolymer (Table 1). As the content of the 3H4FT monomer is increased, a corresponding decrease in RR is observed. The highest RR is observed for P0 (95%), whereas the lowest is observed for P100 (78%). The decreased RR is likely due to differences in monomer reactivity, resulting from the altered electronic character of the 2Br3H4FT monomer versus the 2Br3HT monomer. Typically head-to-head homocouplings in DARp can be suppressed by the use of optimized polymerization conditions, bulky carboxylate sources, and phenoxide ligands.38,41 Phosphine ligands create a larger coordination sphere around the Pd center, inhibiting Pd dimer formation and the subsequent disproportionation that leads to homocouplings. In this case it not clear what the reason is for the reduced RR, since each polymer was synthesized under identical polymerization conditions.

MALDI-TOF mass spectrometry was used as an additional characterization aid for studying the structure of these copolymers (Figure 4). In the homopolymers, P0 and P100, narrow periodic peaks can be observed. The spacing between the peaks corresponds to the repeat unit molecular weights, and the absolute molecular weights indicate exclusively H/H termination. Full MALDI-TOF spectra are provided in the Supporting Information. Additional peaks in the P0 and P100 spectra indicate some loss of –C$_3$H$_7$ (71 amu) fragments, and Br (78 amu) in the case of P100, as observed previously.12 As the polymer composition is varied from P0 to P25, a broadening of the peak distribution from a single peak to several peaks clustered in a normal distribution can be observed in the MALDI spectrum. This is expected due to the statistical distribution of possible copolymer compositions, with an average of 25% of the 3H4FT repeat unit. While the copolymer...
composition in the case of \(\text{P25} \) will have an aggregate average of 25% 3H4FT units, individual chains will vary in their monomer ratios, resulting in the observed peak broadening. This effect is amplified for \(\text{P50} \) where all the peaks appear to be nearly equal in intensity, separated by a mass of 19 amu (i.e., the mass of fluorine). In \(\text{P75} \), the peak distribution is more similar to that of \(\text{P25} \), as expected. Overall, these results provide a second method of verifying both copolymer structure and composition.

Optical properties of the copolymers in solution and solid films were studied by UV–vis spectroscopy (Figure 5). In solution, \(\text{P0} \) has a maximum absorption at \(\sim 460 \text{ nm} \). With increasing fluorination, the \(\lambda_{\text{max}} \) is steadily blue-shifted with \(\text{P100} \) exhibiting maximum absorption at \(\sim 410 \text{ nm} \). Lower energy shoulder absorption (\(\sim 550 \text{ nm} \)) in the \(\text{P50}–\text{P100} \) copolymers is indicative of these materials’ tendency to aggregate in solution. Fluorination is known to enhance C–H···C–F interactions in aromatic molecules, which can lead increased aggregation in solution and reduced solubility.\(^{14,19,43}\)

In thin-film absorption, each of the copolymers demonstrated enhanced absorption at longer wavelengths. This is due to \(\pi–\pi \) orbital overlap as the copolymers crystallize into well-
ordered structures. The onset of absorption indicates the lowest energy photons that may be absorbed (i.e., the bandgap) for each of the materials. P0 has an onset of absorption of ~650 nm, corresponding to a bandgap of 1.91 eV. With increasing fluorination, the absorption onset shifts to shorter wavelengths, as with the solution spectra, leading to slightly increased bandgaps of 1.93, 1.96, 1.96, and 1.99 eV in P25, P50, P75, and P100, respectively. Slightly blue-shifted absorption in fluorinated thiophene oligomers and polymers has been observed previously12,14 as well as in many examples of various fluorinated conjugated polymers.10,11

Measurement of the onset of oxidation (i.e., E_{HOMO}) for each of the copolymers was achieved using cyclic voltammetry (Figure 6). With a systematic increase in the amount of fluorination, it would be expected that the onset of oxidation steadily increases in a somewhat linear manner as indicated by computational results for these systems. However, what is empirically observed is quite different. P0 exhibits an onset of oxidation at 0.28 V. With 25% fluorination in P25 the onset of oxidation is increased by ~0.26 to 0.54 V. In P50, the onset of oxidation is again increased by ~0.13 to 0.67 V. At this point, despite increasing fluorination, the onset of oxidation seems to hit a plateau value and does not increase any further. P75 and P100 thus display similar onsets around 0.69 V. This observation can be thought of as resembling the classic donor−acceptor copolymer paradigm, where the “donor” unit is the major contributor to the overall E_{HOMO} and the “acceptor” is the major contributor to the E_{LUMO}. In this case, once the copolymer ratio reaches 50% (P50), the polymer can be visualized as quasi-alternating, and thus the E_{HOMO} level is “pinned” at that level. When the amount of 3H4FT units (“donor” units) is increased further to 75% and 100%, the E_{HOMO} then remains unchanged since this unit is the major contributor toward the observed E_{HOMO}. As a verification of the cyclic voltammetry results, ultraviolet photoelectron spectroscopy (UPS) experiments were also performed. Comparable results were obtained for the E_{HOMO} levels as measured by UPS (Supporting Information).

Overall, the E_{HOMO} for the copolymers ranges from ~5.08 eV for P0 to ~5.49 eV in P100, as displayed in Figure 6. Thus, fluorine substitution can dramatically lower the E_{HOMO} by ~0.4 eV, which is more significant than many examples of fluorinated conjugated polymers where smaller shifts of 0.1−0.2 eV are typically observed.10,14 Recent reports of f-P3ATs show similar shifts in the E_{HOMO} as observed here.14 The capability to adjust the E_{HOMO} over a range of 0.4 eV can be useful for tuning exact HOMO levels as measured by UPS and better charge separation.

The crystalline ordering of each copolymer, both in pure polymer films and in polymer:PCBM blend films, was investigated by grazing incidence wide-angle X-ray scattering (GIWAXS) (Figure 7). In the pure polymer films, peaks corresponding to the interchain lamellar spacings (100), (200), and (300) can be clearly observed in the out-of-plane (q_z) direction, indicating a primarily edge-on crystal orientation. As fluorine content is increased, the intensity of the (200) and (300) peaks decreases, suggesting a decrease in the periodic order of the crystalline domains, and an overall reduction in the crystallinity in pure polymer films. The position of the peak (~0.4 Å$^{-1}$) remains unchanged, as expected, since this d-spacing is dominated by the length of the alkyl side chains (~C$_6$H$_{13}$). The prominence of the (010) peak at ~1.6 Å$^{-1}$ in the in-plane (q_{\parallel}) direction indicates again that the $\pi-\pi$ stacking and the overall crystallite orientation is primarily edge-on.

In the blended thin films with the acceptor material (PC$_{71}$BM) used for the OPV device active layers, the polymers display subtle differences compared to the pure polymer films. First, along q_z and q_{\parallel}, the intensity of the (100) reflection decreases with increasing fluorine content (up to P50). With increasing fluorine content beyond P50, the reflection sharpens and intensifies up to P100. This suggests that crystalline order in the blends is decreased as the structural order in the copolymer backbone has more variation, with P50 showing the least crystallinity, followed by P25 and P75, which show similar order. Since a well-defined repeat unit structure in polymers is known to enhance crystallinity, this is not particularly surprising. Most notable in the in-plane (q_{\parallel}) scattering is the appearance of a significant (010) peak with increasing fluorine content. The (010) peak in the P0 blend is almost nonexistent, but from P25 up to P100, the (010) increases steadily as fluorine content is increased with no change in the $\pi-\pi$ stacking distance. The increasing intensity of the (010) peak with increasing fluorination indicates that the molecular ordering of the polymers is preferentially adopting an edge-on orientation relative to the substrate, which is particularly enhanced in the presence of PCBM. However, the increased intensity in the (010) does not necessarily correlate to increased crystallinity overall.

OPV devices were fabricated to evaluate potential trends in J_{sc} with the observed E_{HOMO} levels from CV and determine if increased fluorination offers any performance advantage. OPVs were constructed with a standard architecture (ITO/
PEDOT:PSS/polymer:PC71BM/Ca/Al, where the active layer was spin-coated from o-DCB. Representative current–voltage curves are provided in Figure 8, and averaged device characteristics are given in Table 2. Reliable devices could not be fabricated using P100 due to reduced solubility, which led to the formation of extremely rough films. For P25 and P50, the V_{oc} is enhanced relative to P0. This shift corresponds with the lower E_{HOMO} for these materials; however, this trend does not follow through the series as P75 does not show a higher V_{oc}. Higher V_{oc} can typically be correlated to larger E_{HOMO} donor $-$ E_{LUMO} acceptor offsets.50 However, V_{oc} is also known to decrease with increased recombination at the either the donor/acceptor bulk heterojunction interface or interlayer interface, which may be the case for P75, due to slight differences in polymer solubility and/or greater immiscibility with PCBM.45

With increasing fluorination, the short-circuit current (J_{sc}) and fill factor (FF) seem to be systematically reduced, possibly due to decreased crystallinity and/or increasing edge-on orientation as evidenced by GIWAXS. Reduced J_{sc} could also be a result of the decreasing RR that was observed in the increasingly fluorinated materials by NMR, which is known to influence hole mobility in polythiophenes. Lower FF may suggest a greater surface roughness of the active layer films and subsequently poorer interlayer/electrode contact, which could be the result of the slight differences in solubility with increasing fluorination. FF is also heavily influenced by balanced charge transport between the donor/acceptor materials, and so reduced polymer hole-mobility could also reduce FF. Overall, a PCE of 3.6% for P0 corresponds well to published reports for the P3HT:PC71BM system, indicating that the DArP method used for this study can produce high quality materials.4 However, analysis of the PCE for P25–P75 indicates that increased fluorination is detrimental to the device performance overall.

Hole mobilities (Table 2) were estimated using space charge limited current (SCLC) techniques with hole-only devices measured in the dark. J–V curves are provided in the Supporting Information. The highest hole mobility was observed in P0 (9.7×10^{-4} cm2 V$^{-1}$ s$^{-1}$), and as the percent fluorination was increased, hole mobility steadily decreased to the lowest observed mobility in P75. These measurements (for P0) are consistent with previous hole-mobility measurements for P3HT synthesized by DArP as measured by SCLC methods.17,23,46 The decreasing trend in SCLC mobilities mirrors the decreasing trend observed in the J_{sc} for OPV devices. Given the similar molecular weights of the polymers, it is likely that lower mobility as fluorination is increased is related to the lower regioregularity in those materials, as well as differences in crystallinity.

In previous studies of fluorinated polymers, it has been shown that fluorination can markedly influence the morphology during spin coating.43,44 The addition of fluorine can impart changes in solubility, surface segregation, or also induce a fluorophobicity effect with the acceptor, PCBM, creating phase separated blends with features that are too large (>100 nm) for efficient exciton transport and dissociation. Often this issue requires fine-tuning the spin-coating solvent using binary solvent mixtures or additives to ensure formation of the appropriate morphology. Thus, it is important to understand the blend morphology in this system, where the percent fluorination is varied over a large range. As evidenced by TEM (Figure 9), regardless of the percent fluorination, well mixed bulk-heterojunction morphologies were formed, showing no significant change in the morphology. This indicates that the observed device performance is not limited by a large scale phase separation. Furthermore, since solvent additives are often employed to reduce immiscibility/phase separation, their use in this case would not necessarily lead to any obvious benefits. While each of the blends appears to form well dispersed bulk-heterojunction domains, as fluorination is increased, a slight coarsening of the features can be observed, possibly indicating a change in the domain purity that provides the observed contrast enhancement. In the P100 image, clear variations in the film thickness can be observed. This is due to the poor solubility of P100, causing it to prematurely aggregate and precipitate during spin-coating. The TEM results suggest that the bulk-heterojunction morphology is not the limiting factor for device performance and that differences in polymer regioregularity and crystallinity might be the origin of the reduced device performances as fluorination is increased.

3. CONCLUSION

A series of P3HT-based copolymers were synthesized by direct arylation polymerization (DArP) techniques. By varying the

Table 2. Photovoltaic Characteristics of Polymer:PC71BM OPV Devices

<table>
<thead>
<tr>
<th></th>
<th>V_{oc} [V]</th>
<th>J_{sc} [mA/cm2]</th>
<th>FF [%]</th>
<th>PCE [%]</th>
<th>μ_h [cm2 V$^{-1}$ s$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>0.57 ± 0.01</td>
<td>10.42 ± 0.07</td>
<td>60.55 ± 1.72</td>
<td>3.60 ± 0.10</td>
<td>9.7 × 10$^{-4}$</td>
</tr>
<tr>
<td>P25</td>
<td>0.67 ± 0.01</td>
<td>7.20 ± 0.05</td>
<td>50.94 ± 2.49</td>
<td>2.44 ± 0.12</td>
<td>1.9 × 10$^{-4}$</td>
</tr>
<tr>
<td>P50</td>
<td>0.70 ± 0.01</td>
<td>4.72 ± 0.20</td>
<td>36.85 ± 0.45</td>
<td>1.21 ± 0.04</td>
<td>3.9 × 10$^{-5}$</td>
</tr>
<tr>
<td>P75</td>
<td>0.61 ± 0.00</td>
<td>4.80 ± 1.15</td>
<td>28.11 ± 0.96</td>
<td>0.82 ± 0.18</td>
<td>2.2 × 10$^{-5}$</td>
</tr>
</tbody>
</table>

*Measurements represent average ± standard deviation for >4 devices. *All active layer films processed from DCB. *Hole mobility measured by SCLC methods.
feed ratio of the two monomers, one fluorinated (2Br3H4FT) and one non-fluorinated (2Br3HT), the percentage of each monomer repeat unit in the polymer backbone, and thus the percent fluorination, could be tuned from 0 to 100%. NMR evidence confirms that the repeat unit ratios in the copolymers are nearly identical to the feed ratios and that increasing fluorination is accompanied by a concurrent decrease in the regioregularity. Investigation of the electronic properties of these materials shows that as the percent fluorination is increased, the E_{HOMO} is lowered from -5.08 eV for P0 to -5.47 eV for P50. DFT calculations support this trend. Experimental results indicate that only 50% fluorination is required to reach the lowest attainable E_{HOMO} level for these copolymers, which would provide the maximum benefit for enhancing the V_{oc}. GIWAXS results suggest that increasing fluorination leads to an increasingly edge-on polymer orientation in bulk-heterojunction blends but does not indicate any major differences in the crystalline lattice dimensions. Devices were fabricated to measure OPV performance and SCLC mobility. P0 (P3HT) has a PCE of 3.6%, which is consistent with previous reports for systems of this type. Generally, as fluorination was increased, the performance of OPVs suffered, with decreases in the J_{sc} and FF values. This was mirrored in the observed mobility by SCLC where P0 had the highest mobility (9.7×10^{-4} cm2 V$^{-1}$ s$^{-1}$) and increasing fluorination lowered the mobility consistently to 2.2×10^{-5} cm2 V$^{-1}$ s$^{-1}$ in P100. TEM images suggest that fluorination does not greatly affect the sizing of the domains in the bulk-heterojunction morphology. Overall, we have reported a synthetic approach for tuning the properties of P3HT-based copolymers utilizing DARp techniques. While modifications to P3HT did not lead to enhanced device performance, the synthetic approach presented represents an interesting route to tailor the properties of P3HT by incorporating small amounts of functionalized monomers.

4. EXPERIMENTAL SECTION

4.1. Materials. All reagents and chemicals were purchased from commercial sources (Matrix Scientific, Sigma-Aldrich, Acros Organics, Alfa Aesar) and used without further purification unless stated otherwise. 2-Bromo-3-hexylthiophene (2Br3HT) and 3-hexylthiophene were purchased from Sigma-Aldrich. The precursor to 2-bromo-3-hexyl-4-fluorothiophene (2Br3H4FT) and 2,5-dibromo-3-hexyl-4-fluorothiophene was synthesized by previously demonstrated synthetic procedures.12,14,37 All reactions were performed under an inert (N$_2$) atmosphere.

4.2. Characterization. 1H and 19F NMR spectra were collected with a 500 MHz Bruker Ascend instrument with variable temperature capability. UV−vis absorption measurements of polymer solutions and films were performed on a PerkinElmer Lambda 25 UV−vis spectrometer. Solution spectra were measured from dilute polymer solutions in CHCl$_3$ at elevated temperatures to reduce aggregation. Films for absorption spectra were spin-coated from 10 mg/mL polymer solutions in CHCl$_3$ at 1500 rpm for 60 s. Polymer molecular weight and dispersity (D) analysis was completed via gel-permeation chromatography (GPC) in 1,2,4-trichlorobenzene at 135 °C using a Polymer Laboratories PL-220 high-temperature GPC instrument calibrated against polystyrene standards. MALDI-TOF experiments were performed on a Bruker microflex instrument, using DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]-malononitrile) as the ionizing matrix (1:1000 w/w polymer to matrix). Cyclic voltammetry (CV) measurements of the polymer films were done with a Bioanalytical Systems Inc. (BASI) EC Epsilon potentiostat using a three-electrode configuration consisting of a glassy carbon working electrode, a Ag/AgNO$_3$ (0.01 M in acetonitrile) reference electrode, and a Pt wire counter electrode with tetrabutylammonium hexafluorophosphate (0.1 M) in acetonitrile as the electrolyte solution. Measurements were calibrated to the ferrocene/ferrocenium redox couple (Fc/Fc$^+$) with an external reference. Films for CV were drop-cast directly onto the glassy carbon working electrode from polymer solutions in CHCl$_3$. Bright-field TEM was conducted using a JEOL 2000 FX TEM instrument operating at an accelerating voltage of 200 kV. Active layer films for TEM were spin-coated in the same manner as for OPV devices on PEDOT:PSS. The sample films were then floated onto copper TEM grids in water. Molecular modeling was performed using the Gaussian 09 suite of programs.32

4.3. Synthesis of 2-Bromo-3-hexyl-4-fluorothiophene (2Br3H4FT). Into a dry 1 L round-bottom flask was added 2,5-dibromo-3-hexyl-4-fluorothiophene (13.75 g, 39.96 mmol) and 400 mL of anhydrous THF (0.1 M) under the protection of dry N$_2$(g). The mixture was cooled to -78 °C in a dry ice/acetonite bath. n-ButLi (16.3 mL, 2.5 M, 1.02 equiv) was added dropwise over 30 min, during this time the color changed from clear and colorless, to dark blue-green before ultimately turning orange, indicating the formation of the lithiated intermediate. The reaction was stirred at -78 °C for 30 min. Water (12 mL) was then added dropwise to quench the lithiated intermediate, and the mixture became yellow with white precipitate. After warming to RT overnight, the reaction mixture was washed with water, extracted with ether, washed with brine, dried with MgSO$_4$, and concentrated yielding an orange oil. The crude product was purified by column chromatography on SiO$_2$ (hexanes), vacuum distillation, and finally by reverse phase (C18) column chromatography (hexanes) to isolate the pure product 2Br3H4FT as a clear oil (6.25 g, 23.57 mmol, 59%). Only one isomer was observed, indicating a selective reaction. 1H NMR (500 MHz, CDCl$_3$): 6.62 (1 H, d, J = 1.5 Hz), 2.51 (2 H, s, J = 7.5 Hz), 1.53 (2 H, m), 1.30 (6 H, m), 0.88 (3 H, m). 19F NMR (470.385 MHz, CDCl$_3$): -126.22. GC-MS (m/z): Found: 264, 265 g/mol (Calcd: 263.998, 265.996 for [C$_{10}$H$_{13}$BrF$_5$]).
4.4. Typical Polymerization Procedure. All polymers were synthesized using the same optimized DArP procedure. Procedure is a typical polymerization procedure used in this work. Into a 10 mL Schlenk tube was added 2Br3HT and 2Br3H4FT in the appropriate molar feed ratio at 3 mmol total monomer scale, 62.1 mg of Pd2dba2CHCl2 (0.06 mmol, 0.02 equiv), 84.57 mg of P(ο-MePh)3 (0.24 mmol, 0.08 equiv), 306 mg of PivOH (3 mmol, 1 equiv), and 2.932 g of Cs2CO3 (9 mmol, 3 equiv), followed by purging with N2. THF (6 mL, 0.5 M) was then added as solvent, and air was removed via three freeze—pump—thaw cycles. The Schlenk tube was then securely sealed with a Te stopper, enabling superheated temperatures. The reaction mixture was stirred at RT for 20 min and then heated to 115°C for 40 h. After completion of the reaction time, the contents of the reaction vessel were then cooled and precipitated into stirring methanol. CHCl3 was used to dissolve any solid material prior to precipitation. All precipitated solids were then collected by filtration and purified by Soxhlet extraction washing with methanol, acetone, and hexanes. The polymers were then extracted with CHCl3, precipitated into stirring MeOH, filtered, and dried. To ensure thorough removal of Pd from the samples, each of the polymers was redissolved in CHCl3, stirred with diethylammonium diethylthiocarbamate for 6 h, and reprecipitated into MeOH. 1H and 13C NMR spectra along with MALDI-TOF mass spectra are provided for each of the polymers in the Supporting Information.

4.5. OPV Device Preparation. Standard device architecture (ITO/PEDOT:PSS/active layer/Ca/Al) was used. Indium tin oxide (ITO)-coated glass substrates (20 ± 5 ohms/square) were purchased from Thin Film Devices Inc. Substrates were cleaned through ultrasonic treatment in detergent, water (2×), isopropyl alcohol, acetone, and hexanes. The polymers were then extracted with CHCl3, precipitated into stirring MeOH, filtered, and dried. To ensure thorough removal of Pd from the samples, each of the polymers was redissolved in CHCl3, stirred with diethylammonium diethylthiocarbamate for 6 h, and reprecipitated into MeOH. 1H and 13C NMR spectra along with MALDI-TOF mass spectra are provided for each of the polymers in the Supporting Information.

4.6. GIWAXS Measurements. Grazing incidence wide-angle X-ray scattering (GIWAXS) characterization was performed at beamline 7.3.3, Advanced Light Source (ALS), Lawrence Berkeley National Lab (LBNL). X-ray energy was 10 keV and operated in top off mode. The scattering intensity was recorded on a 2D image plate (Pilatus 2M) with a pixel size of 172 μm (1475 × 1679 pixels). The samples were ~15 mm long in the direction of the beam path, and the detector was located at a distance of 300 mm from the sample center (distance calibrated by AgB reference). The incidence angle was chosen to be 0.16° to optimize the signal-to-background ratio. Thin-film active layer blend samples were prepared on PEDOT:PSS covered Si wafers in a similar manner to the OPV devices, and pure polymer samples were prepared on Si wafers with a 2 nm natural oxide layer.